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LETTER TO THE EDITOR

Towards the grain boundary phonon scattering problem:
evidence for a low-temperature crossover
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Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, 141980
Dubna, Moscow Region, Russia
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Abstract. The problem of phonon scattering by grain boundaries is studied within the wedge
disclination dipole (WDD) model. It is shown that a specificq-dependence of the phonon mean
free path for biaxial WDD results in a low-temperature crossover of the thermal conductivity,
κ. The obtained results allow us to explain the experimentally observed deviation ofκ from a
T 3 dependence below 0.1 K in LiF and NaCl.

The effect of low-angle grain boundaries on the thermal conductivity,κ, of LiF and NaCl
over the temperature range 0.08–5 K has been investigated in [1, 2]. The main conclusions
are the following: (i) the boundaries are sessile, (ii) the dominant phonon-scattering process
comes from static strain fields caused by boundaries, and (iii) the experimental results
are compatible with predictions of the theoretical model [3], where a grain boundary is
represented as a wall of edge dislocations. In experiments, however, in addition to the
expected behaviourκT −3 = constant, a remarkable increase inκT −3 belowT ∗ ∼ 0.1 K was
detected. A similar deviation, but beginning near 2 K, was observed in sapphire [4]. There
is still no satisfactory explanation for this phenomenon. In particular, in [1] it was supposed
that the measured increase can be caused by the onset of partial specular reflection from the
lightly sandblasted walls. Similarly, it was suggested in [4] that ‘a frequency independent
scattering mechanism should be present in these samples which becomes ineffective below
1 K’.

In 1955 Klemens [3] studied the problem of the scattering of lattice waves by grain
boundaries within the Born approximation. Considering the grain boundary as an array
of edge dislocations lying in the plane of the boundary, he found that the phonon mean
free path is frequency independent. Hence aT 3 dependence of the thermal conductivity at
low temperatures was associated with the boundary scattering. While this explains well the
experimental results [1, 2, 4] above some characteristic temperature,T ∗, it fails to describe
the observed anomaly belowT ∗. It is important to note in this connection that the result [3]
was obtained under the assumption that the dislocation wall isinfinitely long. For a finite
wall of well separated dislocations the problem of the phonon scattering becomes difficult
and is still unresolved.

An alternative model for the description of grain boundaries has been presented in [5].
It was proposed that grain boundaries, being rotational rather than translational defects, can
be described more naturally by disclinations. Moreover, what is important, the far strain
fields caused by wedge disclination dipoles (WDD) were found to agree with those from
finite walls of edge dislocations [6, 7]. For this reason, the WDD-based model allows us to
study important effects due to finiteness of grain boundaries.
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Notice also that additional interest to this problem was inspired by the recent
consideration of disclinations and dipoles of disclinations in the context of metal glasses
[8, 9], graphite films [10], and nanostructures [11]. For example, an attractive model for a
metallic glass proposed in [8] results from the disordering of a Frank–Kasper disclination
network. Graphite films are expected to contain a number of disclination pairs due to the
presence of the five- and the seven-membered rings [10]. Disclinations and disclination
dipoles are of importance in graphite nanotubes which have attracted great interest recently.

At the same time, it is known [3] that information about the nature of the principal
imperfections in crystals can be extracted from a study of the thermal conductivity. In
particular, the temperature dependence of the thermal conductivity arising from defects is
governed by the frequency dependence of their scattering cross section for lattice waves.

In this letter, we study the problem of phonon scattering by grain boundaries in the
framework of the WDD picture. These scatterers are shown to possess rather specific
properties. In particular, theq-dependence of the phonon mean free path varies significantly
for different types of dipoles. We show that the experimental results [1, 2] are in good
agreement with the calculated thermal conductivity due to phonon scattering bybiaxial
WDD both above and belowT ∗.

Let us calculate a mean free path of phonons of frequencyω scattered by the potential
associated with a static deformation of a lattice caused by straight WDD. Following the
generally accepted approach [3, 12] we consider an effective perturbation energy due to the
strain field caused by a single WDD in the form

U(r) = h̄ωγ SpEAB (1)

whereh̄ω is the phonon energy with wavevectorq, ω = qvs , vs is the sound velocity (it is
assumed that three acoustic branches are equivalent),γ is the Gr̈uneisen constant, andEAB
is the strain tensor due to WDD.

To simplify the problem, we assume that incident phonons are normal to disclination
lines. The suitable geometry is chosen: disclination lines are directed along thez-axis, the
dipole’s arm is oriented along thex-axis. In this case, the strain matrix for WDD is known
(see, e.g., [7]), andU(r) takes the form:

U(x, y) = B
[

1

2
ln
(x + L)2+ y2

(x − L)2+ y2
− l1 x + L

(x + L)2+ y2
+ l2 x − L

(x − L)2+ y2

]
(2)

whereB = h̄qvsγ ν(1− 2σ)/(1− σ), ν is the Frank index,σ is the Poisson constant, 2L
is the dipole separation, and parametersl1 and l2 specify displacements of axes of rotation
from points where disclination lines pierce thexy plane. Notice that all possible types of
WDD are included in (2). In general, it describes a biaxial WDD with arbitrarily arranged
axes of rotation. Forl1 − l2 = 2L, l1 = −l2, and l1 = l2 = 0 one obtains the uniaxial
WDD, the symmetrical uniaxial WDD, and the biaxial WDD with nonskew axes of rotation,
respectively.

According to (2), at chosen geometry the problem reduces to the two-dimensional case
with the phonon mean free path given by

3−1
q = ni

∫ 2π

0
(1− cosθ)<(θ)dθ. (3)

Here<(θ) is an effective differential scattering radius andni is the areal density of defects.
Within the Born approximation<(θ) is determined as [12]

<(θ) = qS2

2πh̄2v2
s

|〈q|U(r)|q′〉|2 (4)
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where all vectors are two-dimensional,S is a projected area, the bar denotes an averaging
procedure overα which defines an angle betweenp = q − q′ and thex-axis. In other
words, it means the averaging over randomly oriented dipoles in thexy plane. Evidently,
the problem reduces to the estimation of the matrix element in (4) with the potential from
(2). For this purpose, it is convenient to use the polar coordinates(r, φ)

U(p, α) = 〈q|U(r)|q′〉 = 1

S

∫
d2r exp[ipr cos(φ − α)]U(r, φ). (5)

Herep = |p| = 2q sin(θ/2). Omitting the tedious calculations (the details will be presented
elsewhere) we write out the final result

U(p, α) = B
[
−4π i

p2
sin(pL cosα)+ 2π i1l

p
cosα cos(pL cosα)

]
(6)

where1l = l1 − l2. After averaging of|U(p, α)|2 over α and following integration in (3)
with respect toθ one obtains

3−1
q = D2(νL)2niq

{
z2

(
1

2
+ J 2

0 (2qL)

)
+
(

8− z(z+ 8)

2

) (
J 2

0 (2qL)+ J 2
1 (2qL)

)
− 4

qL
J0(2qL)J1(2qL)

}
(7)

whereD = πγ (1− 2σ)/(1− σ), z = 1l/L, andJn(t) are the Bessel functions. It should
be emphasized that (7) is the exact result which allows us to describe all types of WDD.
Notice that the behaviour of3q in (7) is actually governed by the only parameter 2L which
characterizes the dipole separation. Before proceeding to important applications of (7) let
us consider two limits to early solved problems. As mentioned above, a biaxial WDD
(more precisely forl1 = l2 = 0) can be simulated by a finite wall of edge dislocations with
Burgers vectors situated in parallel. As a consequence, with decreasing a dipole separation
such dipole should be equivalent in its properties to a single edge dislocation with the
Burgers vectorb = 4πLνey . Indeed, for smallL one can obtain from (7) that3 ∼ q−1.
This is the well known result for the phonon scattering by edge dislocations. In the opposite
limit of largeL, 3q for a biaxial dipole becomes constant (see details below) in agreement
with the result obtained for the infinite dislocation wall [3].

In real materials, dipole separations which are of order of the grain size can lie in the
broad range between 50̊A (for nanocrystals) and 105 Å (for polycrystals). As follows from
(7), two specific regimes of scattering appear depending on the wavelengthλ of an incident
phonon in comparison with 2L. As would be expected, the change in behaviour of3q

occurs atλ ∼ 2L. Thus, for thermal phonons, we can estimate the typical temperature of
transition

T ∗ ≈ h̄vs

2LkB
(8)

wherekB is the Boltzmann constant.
An interesting consequence of (7) is the conclusion that despite the seemingly similar

nature of scatterers, the behaviour of3q differs remarkably for different types of dipoles.
Let us examine two limiting cases.

1. Uniaxial dipoles,1l = 2L (z = 2). Equation (7) takes the form

3−1
q = 2D2(νL)2niq

(
1+ J 2

0 (2qL)− J 2
1 (2qL)−

2

qL
J0(2qL)J1(2qL)

)
. (9)
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According to (9), forqL � 1 one obtains3q ∼ q−1, whereas forqL � 1 3q ∼ q−5.
Thus, in the case of small wavelengths (in comparison with a dipole separation) the phonon
scattering due to uniaxial WDD behaves like that for edge dislocations. In the limitλ� L

the scattering of phonons by uniaxial WDD is found to have a strongq-dependence, even
stronger than the known Rayleigh scattering of phonons by point impurities. It should
be noted that such behaviour is compatible with an overall view of uniaxial WDD as a
strongly screened system [7]. It is worth mentioning that the low-angle uniaxial WDD can
be simulated by a finite wall of edge dislocations complemented by twoadditional edge
dislocations at both ends of the wall. The sign of these dislocations is opposite to that of
dislocations in the wall and absolute values of Burgers vectors are equal tob = 2L tan(πν).
Notice that just these two dislocations provide a screening. A significantly different picture
arises in the case of the biaxial WDD withl1 = l2.

2. Biaxial dipoles with1l = 0 (z = 0). Equation (7) transforms to

3−1
q = 8D2(νL)2niq

(
J 2

0 (2qL)+ J 2
1 (2qL)−

1

2qL
J0(2qL)J1(2qL)

)
. (10)

In this case, in the long wavelength limit one gets3q ∼ q−1 while for λ < L we obtain
that3q → constant. It should be stressed that the appearance of theq-independent region
distinguishes remarkably this scatterer from other types of WDD as well as from dislocations.

Figure 1 shows3q for three types of WDD at 2qDL = 6× 103 (or L ≈ 2× 103 Å).
One can clearly see the characteristic points where crossover occurs. In accordance with
our estimation in (8), crossover takes place atq/qD ∼ (1/6) × 10−3 or, respectively, at
T ∗ ∼ 2/6000 where2 is the Debye temperature. In the general case of arbitrarily arranged
axes of rotation, 0< 1 < 2L, the mean free path interpolates between two limiting curves.
The constant in (7) is chosen to beD2(νL)2niqD = 106 cm−1.

Let us discuss briefly the applicability of the Born approximation to the considered
problem. Notice that, as in the case of dislocations, the far field of the potential in (2)
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Figure 1. Phonon mean free path3q as a function of scaled frequencyq/qD at 2qDL = 6×103

for 1l = 0 (solid line),1l = 2L (dashed line), and1l = 0.5L (dotted line). The parameter
set used is: L = 1.35 × 10−5 cm, ν = 0.023, D = 2.6, ni = 1.8 × 107 cm−2, and
vs = 4.8× 105 cm s−1.
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behaves like 1/r. Thus, all arguments in support of the validity of the Born approximation
for the problem of phonon scattering by dislocations (see, e.g., [12, 13]) are also appropriate
here. Nevertheless, it is useful to perform a rough estimation. In our case, by analogy with
the unscreened Coulomb potential [14], we obtain 2qL � (1− 2σ)/[(1− σ)νγ ]. Thus,
one can conclude that the Born approximation should be valid for the description of low-
angle WDD and/or small dipole separation 2L. Otherwise, one has to restrict the region of
admissibleq. One can expect, however, that the qualitative behaviour of3q will remain
unchanged even beyond the applicability of the Born approximation. Notice also that
when axes of WDD are orientated randomly, one has to perform an additional averaging.
However, the known result for dislocations [3, 12] indicates that such averaging should lead
only to a modification of the numerical factor in (7).

Let us estimate a contribution to the thermal conductivity caused by the phonon
scattering due to WDD. For this purpose, one can use the known kinetic formula written in
the dimensionless form

κ = k4
BT

3

2π2h̄3v2
s

∫ 2/T

0
x4ex(ex − 1)−23(x)dx (11)

wherex = h̄ω/kBT , and the specific heat capacity is chosen in the standard Debye form.
We have restricted ourselves to the thermal phonons withT < 2. Then, for uniaxial WDD
one obtains thatκ ∼ T −2 at low temperatures whileκ ∼ T −1 for T → 2.

Let us examine (11) in detail for biaxial WDD with3q from (10). In accordance with
the above analysis, the thermal conductivity should exhibit a crossover fromκ ∼ T 2 to
κ ∼ T 3 with increasingT . Although the crossover temperatureT0 differs fromT ∗, it is still
determined by the value of 2L. Figure 2 shows the reduced thermal conductivity calculated
theoretically according to (11). We would like to stress that, within our scenario, an increase
in κT −3 below T ∗ arises from the phonon scattering by biaxial WDD withl1 = l2 and is
quite universal. It should be observed in polycrystals with appropriate sizes of grains.

We have considered the experimental results for LiF [1, 2], NaCl [2] and sapphire [4].
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Figure 2. Reduced thermal conductivity due to WDD scattering,κ × T −3 versus temperature
T , calculated according to (11) with the same parameter set as in figure 1. Measured points for
the boundary-limited thermal conductivity in LiF (from [1]) are indicated by triangles.
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Experimental data due to boundary-induced phonon scattering in LiF from [1] are shown
in figure 2. As is seen, the data are in a good agreement with our results for an appropriate
choice of model parameters. Notice that for a qualitative comparison we need the only
parameter which is a size of the grain. For NaCl the thermal conductivity was found to
have similar behaviour but with larger magnitude [2]. In sapphire, the measured crossover
temperature is essentially higher. This can be explained by smaller grain sizes. It is
interesting to note in this connection that smallL can take place in glasses where the
crossover temperatureT0 ∼ 1 K and even higher. Thus, the dependenceκ ∼ T 2 can be
extended up to these temperatures. A detailed study of physics of dielectric glasses on the
basis of biaxial WDD will be presented in a separate paper.

To conclude, the grain-boundary-induced phonon scattering has been studied within the
WDD-based model. The proposed model is shown to take into account the finiteness of the
boundary which is important for thermal phonon scattering. The phonon mean free path
due to scattering by static wedge disclination dipoles has been exactly calculated. We have
shown that the thermal conductivity exhibits a crossover fromκ ∼ T 2 to κ ∼ T 3 with T
increasing. Thus, the biaxial WDD is a good candidate for the specific scatterer proposed
in [4]. The results obtained allow us to explain the deviation of the thermal conductivity
from aT 3-dependence below 0.1 K observed in LiF and NaCl. We expect that this crossover
has a universal character and should be observed in various materials with the pronounced
granular structure.

We thank Sergei Sergeenkov for discussions and useful comments. This work has been
supported by the Russian Foundation for Basic Research under grant No 97-02-16623.
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